DEPARTMENT OF TRANSPORTATION

Extreme Flood Vulnerability Analysis

Chris Dorney (WSP) | PM

Gregg Cornetski (WSP)

Tim Grose (WSP)

Josh Amos (WSP)

Peter Enright (WSP)

Agenda

- Introduction to the project
- Methodology overview
 - Phase 1: Flood Exposure Analysis
 - Phase 2: Risk Analysis
- Next steps

Introduction to the Project

- Motivation: Extreme precipitation is increasing; develop a method to efficiently understand current and future (climate change-influenced) flood risk to MnDOT...
 - Bridges
 - Bridge-culverts
 - Pipes
- Assets to which the method is not applicable
 - Bridges on large rivers with drainage areas exceeding regression equation maximums
 - Small pipes with drainage areas smaller than regression equation minimums

MPI-ESM-MR

MPI-ESM-MR

MPI-ESM-MR

Key Project Outputs

• Flood exposure data by asset

P_226	1376		1xP	pipe Ellips	se 69"x4	9" INV: 1	149.192
Road EL:	1155.77	Culvert	Crown EL:	1153.22	Lo	w Road EL:	1155.67
Return			RCP 4.5			RCP 8.5	
Period	Current	2039	2069	2099	2039	2069	2099
2	1151.61	1151.81	1151.96	1152.13	1151.89	1152.15	1152.41
5	1153.09	1153.22	1153.34	1153.45	1153.29	1153.45	1153.63
10	1154.09	1154.20	1154.30	1154.40	1154.26	1154.40	1154.55
25	1155.40	1155.59	1155.78	1155.82	1155.69	1155.77	1155.83
50	1156.06	1156.08	1156.10	1156.13	1156.09	1156.11	1156.15
100	1156.28	1156.27	1156.32	1156.32	1156.31	1156.37	1156.36
500	1156.70	1156.76	1156.74	1156.72	1156.70	1156.72	1156.77
				•			

Water Above Minimum Bridge Deck Elevation or Road Elevation Above Culvert	->	
Water Above Bridge Low Chord Elevation or Top of Culvert Elevation	->	

ove Bridge Low Chord Elevation of Top of Curvert Elevation	->
Water Above Roadway Sump Elevation	->

adway Sump Elevation -> ### Glass-Walling Occuring -> ###

- Flood risk data by asset
 - "Do-nothing" lifecycle costs through the year 2100

	Moc	lerate Clin	nate Scen	ario (RCP	4.5)	Н	igh Climat	te Scenari	o (RCP 8.	5)
Asset	Total Costs (Median)	Total Costs (Lower Conf. Int.	Total Costs (Upper Conf. Int.)	Agency Costs	User Costs	Total Costs (Median)	Total Costs (Lower Conf. Int.	Total Costs (Upper Conf. Int.)	Agency Costs	User Costs
1	\$	\$	\$	\$	\$	\$	\$	\$	\$	\$
2	\$	\$	\$	\$	\$	\$	\$	\$	\$	\$
	\$	\$	\$	\$	\$	\$	\$	\$	\$	\$
N	\$	\$	\$	\$	\$	\$	\$	\$	\$	\$

Potential Use Cases for the Outputs

- Prioritizing assets for facility-level adaptation assessments
- Development of the transportation asset management plan (TAMP)
- Informing emergency response planning
- Identifying potential enhancements to operations and maintenance activities

Methodology Overview

A Quantitative Risk Approach

- Calculate expected costs (risk) to assets from climate stressors if no adaptation actions are taken
- Costs estimates include
 - Damage and repair costs
 - Costs to system users

Physical Damage Assessment

- Estimate damage costs at each asset from projected flood events
- Roadway damage model (approaches)
 - Pavement delamination
 - Embankment erosion
- Culvert damage model
 - Loss via embankment erosion
 - Outfall erosion
- Bridge damage model
 - Pavement delamination
 - Deck damage/displacement
 - Pier, abutment, & contraction scour

User Impacts Assessment

- Estimate costs to the traveling public for detouring around a flood-impacted asset considerate of...
 - Traffic volumes
 - Network redundancy
 - Estimated outage durations
 - Time, fuel, & operating costs
- To be implemented through a customdesigned detour routing algorithm run in GIS

Quantifying Flood Risk

Key Steps in the Methodology

- Phase 1: Flood exposure analysis
 - 1. Preparation of hydraulic model inputs
 - 2. Running the hydraulic model
 - 3. Incorporating hydraulic model outputs in GIS
- Phase 2: Risk analysis
 - 1. Preparation of risk model asset data inputs
 - 2. Preparation of risk model user data inputs
 - 3. Running the risk models

Preparation of Hydraulic Model Inputs (Phase 1)

Gregg Cornetski

Required Data

• DEM

- MnDOT Stream Crossing Assets
 - Bridges, Bridge Culverts, Pipes
 - With MnDOT and NBI attributes, particularly the structure dimensions and other physical characteristics.
- Road Centerlines
- Stream Flow Lines
 - USGS StreamStats raster stream grid converted to stream flow lines
- Land Cover
- Current and Future Precipitation Depth Data
- Supplemental Reference Data
 - Aerial Imagery, Oblique Imagery, Google Earth, Google Maps, Google Streetview, NHD, MN DNR Hydrography

Prepare Inputs

- MnDOT stream crossing asset as point
 - Snap to intersection of the stream flow line it conveys and the road centerline it carries.
- Stream slope
- Stream cross section (XS) lines (1 upstream, 1 downstream)
- Stream XS elevation and land cover profile with Manning's Roughness Coefficient
- Road centerline with bridges delineated
- Road centerline elevation profile
- USGS StreamStats current peak flow statistics and drainage area
 - At stream crossing asset, US XS, and DS XS.
- Future peak flow statistics
- Watershed storage series

General Steps

- 1. Snap stream crossing asset point to the intersection of the stream it conveys and the road it carries
- 2. Determine slope of the stream conveyed by the asset
- 3. Create stream XS lines 1 upstream, 1 downstream
- 4. Assign stream slope to stream XS lines
- 5. Create profile along stream XS line that depicts the elevation (from DEM), land cover (from land cover source), and Manning's Roughness Coefficient (function of land cover code) at each point along the XS line
- 6. Create profile along the road centerline carried by the stream crossing asset that depicts the elevation (from DEM) at each point along the road
- 7. Obtain current peak flow statistics and drainage area polygons from USGS StreamStats at stream crossing asset, US XS, and DS XS
- 8. Transform the current peak flow statistics to future peak flow statistics using current precipitation depth data and future precipitation depth data from climate models.
- 9. Calculate water storage capacity series in the stream crossing asset's watershed
- 10. Export stream crossing asset attribute table with current and future peak flows; road elevation profile table; stream XS lines attribute table with current and future peak flows; stream XS profile table; and watershed storage series
- 11. Determine flood water elevations and other metrics in the hydraulic model
- 12. Incorporate results from hydraulic model into GIS and assess the flood exposure (e.g. flood depths) at the asset and along its the road

Closer Look: USGS StreamStats and Current Peak Flows

- Query USGS StreamsStats application using its Batch Processing Tool
- Query the location on the stream where the asset is located and where its XSs are centered
- StreamStats returns peak flow statistics and drainage area polygons, among other information

Closer Look: Future Peak Flows – The Flow Scaling Technique

- 1. Obtain current peak 2, 5, 10, 25, 50, 100, and 500-year stream flows from USGS StreamStats
- 2. Obtain current 24-hour duration 2, 5, 10, 25, 50, 100, 200, and 500-year precipitation depths in the drainage area. AWM precip depths within each drainage area calculated using the drainage area polygon from StreamStats and the NOAA Atlas 14 gridded datasets of current precipitation depths.
- 3. Associate the current peak stream flows with the current peak precipitation depths in the drainage area.
- 4. Create a relationship between the current peak stream flows and the current peak precipitation depths in the drainage area. See graph.
- 5. Obtain future 24-hour duration 2, 5, 10, 25, 50, 100, 200, and 500-year precipitation depths in the drainage area for each horizon year (early-, mid-, late-century) and each RCP (4.5, 8.5).
- 6. Estimate future 2, 5, 10, 25, 50, 100, 200, and 500-year peak stream flows for each horizon year (early-, mid-, late-century) and each RCP (4.5, 8.5). (Table shows only future 100-year peak flows for brevity).

Average Drainage Area Precipitation (Inches)

Name *	PK1_5	PK2	PK5	PK10	PK25	PK50	PK100	PK500	Flw_100_Early_45	Flw_100_Mid_45	Flw_100_Late_45	Flw_100_Early_85	Flw_100_Mid_85	Flw_100_Late_85
P_2261376	33.7	53.9	128	199	316	428	558	946	571.35289	583.458726	595.595529	576.82155	594.017926	611.643823
P_2261376_XS_DS	34.6	54.9	129	199	315	425	552	930	565.0649	576.905091	588.770451	570.396807	587.196351	604.410018
P_2261376_XS_US	33.5	54	130	204	327	445	582	997	596.2023	609.084103	622.004372	602.024147	620.330787	639.105384

Closer Look: Watershed Storage Capacity Series

- Calculate the water storage capacity (i.e. volume) in the stream crossing asset's watershed at an incremental series of water elevations above and below the elevation of the roadway embankment under which the bridge culvert or pipe is located
- Begins at 5 feet above the elevation of the roadway embankment and progresses downward in ½-foot increments to the elevation of the roadway embankment, and downward further until the elevation is reached at which there is no storage capacity.
- Enables the hydraulic tool to account for upstream storage and its attenuation of peak flows

Running the Hydraulic Model (Phase 1)

Peter Enright

Interfacing with HEC-RAS Hydraulic Models

- Automated interface tools build and run HEC-RAS models to predict water surface elevations, velocities and other outputs for a range of scenarios
- Three distinct model types for:
 - \odot Free flowing rivers
 - \circ Bridge structures/obstructions
 - $\,\circ\,$ Culvert structures/obstructions

- Tools pre-process data and provide user opportunity to validate model inputs
- Model outputs can be reviewed by user before being exported

Importing Model Inputs and Pre-Processing

- Input Files sheet
 - Select Source Data button opens File Dialog
- User selects folder where all input files are stored
- Refresh input query tables
- Check input data tables
 - \circ Cross section geometry
 - $\circ~\mbox{Asset}$ location and properties
 - $\circ~\mbox{Flow scenarios}$

Au	toSave Off 📙 HEC-RA	S_Interface_2	2021.xlsb ×				♀ Sear	ch (Alt+Q)											
File	Home Insert Page Layout	Formula	as Data Revie	w View	Developer Help	BLUEBEAM	Power Pivot I	DF-XChange F	loodwater El	evation Tool	s								
6.	<u> </u>	0.0.2		۸ <u>۵</u> ۸۲ =	- 20,	ah w 🖛 i	(C	-		ET.			шо й	ήΣ	AutoSum	× A	\cap		
Ċ.		Calibri	· · · · ·	A A —	= = ***	22 Wrap lext	Gene	ai							Trill v	ΖΥ,	\mathcal{D}		
	Paste Copy	B I <u>∪</u>	- 🖽 - 🔗 -	<u>A</u> ~ =	= = • •	🔛 Merge & Ce	enter ~ \$~	% 🤊 🐄 📲	Conditio	nal Format	as Cell	Insert	Delete For	rmat	1100.	Sort & F	ind & J	Analyze	Sensitiv
Unde	* Served Format Painter		r	-			-	Alcore la sec	romatur	ig • lable •	- Styles -	Ť	č	•	′ Clear ∽	ritter * 30	nect *	Annehusia	Constitution
Undo	Clipboard		Font	R.	Allş	nment	R1	Number	2	Styles			Cells		Ed	liung		Analysis	Sensitiv
К29		• : X	$\sqrt{f_x}$																
1	В	С	D	E	F		G			Н	1	J	K	LN	M N	0	P	Q	R
2	Name	 Extension 	▼ Date accessed ▼	Date modified	Date created	Folder Paul				Exclude 🔽									
3	BridgeCulverts_AS_PR.csv	.csv	7/26/2021 2:29	9 11/2/2020 1	5:01 7/26/2021 2:2	9 C:\Users\enrightp	\Documents\Local	Temp\HEC-RAS Inte	rface\Data\			100	T Source Dat				-		
4	BridgeCulverts_AS_PT.csv	.CSV	7/26/2021 2:29	9 10/6/2020 1	6:29 7/26/2021 2:2	9 C:\Users\enrightp	\Documents\Local	Temp\HEC-RAS Inte	rface\Data\				tt Jour de Dat	•	100		_		
5	BridgeCulverts_XS_PR.csv	.CSV	7/26/2021 2:29	9 11/2/2020 1	5:02 7/26/2021 2:2	9 C:\Users\enrightp	\Documents\Local	Temp\HEC-RAS Inte	rface\Data\							Run A	nalvsis		
6	BridgeCulverts_XS_PT.csv	.CSV	7/26/2021 2:29	9 10/6/2020 1	6:29 7/26/2021 2:2	9 C:\Users\enrightp	\Documents\Local	Temp\HEC-RAS Inte	rface\Data\			Туре от	vsis	anons O	nly				
7	Bridges_AS_PR - Copy.csv	.CSV	7/26/2021 2:29	9 1/19/2021 2	2:38 7/26/2021 2:2	9 C:\Users\enrightp	\Documents\Local	Temp\HEC-RAS Inte	rface\Data\			To Perform:							
0	Bridges_AS_PR_REVI-D_07805.cs	V .CSV	7/26/2021 2:25	3 1/19/2021	6:4/ //20/20212:2 6:30 7/36/30313:3	9 C:\Users\enrightp	Documents Local	Temp\HEC-RAS Inte	rface\Data\				FullA	Asset Analys	sis			-	
10	Bridges XS PR - Convicsv	CSV	7/26/2021 2:29	1/19/20201	0.23 1/20/20212.2	o c. (oseis (eningintp	(Documents (cocar	Temp (nec-kko inte	nace (Data)										
11	Bridges XS PR Rev1-B 67805.csv	v .csv	7/26/2021 2:29	9 1/19/2021	Select Folder	Containing Source D	ata for Analysis												× -
12	Bridges_XS_PT.csv	.csv	7/26/2021 2:29	9 10/6/2020 1		. This D.C	000-100-11-1			Local Terror		AC 1 - A	. Data			0.0	-h D-h-		
13	Pipes_AS_PR.csv	.CSV	7/26/2021 2:29	9 11/2/2020 1	← → ° T	> This PC >	USDISK (C:) > US	ers > enrightp > L	ocuments >	Local lemp	> HEC-K	AS Interface	> Data		v 0	⇒ sear	ch Data		
14	Pipes_AS_PT.csv	.CSV	7/26/2021 2:29	9 10/6/2020 1	0	Mary Californ												8	•
15	Pipes_XS_PR - Copy.csv	.CSV	7/26/2021 2:29	9 4/5/2021 1	Organize 🔻	New tolder												Ree 🔺	•
16	Pipes_XS_PR_Rev1-P_2244848.csv	v .csv	7/26/2021 2:29	9 4/5/2021 1	Name	,			Date modified	ł	Туре		Size						-
1/	Pipes_XS_P1.csv	.CSV	//26/2021 2:29	4/5/20211	- • • ·				11/04/0001.10	02.014									
10					Archive				11/24/2021 12	::03 PIVI	File toldel	ſ							
20					HECRAS				11/24/2021 10):38 AM	File folder	r -							-
21																			- 1
22																			- 1
23																			- 1
24																			- 1
25																			
26																			
27						F	_												
28						Folder name:	Data												
29															Tools 🔻	Selec	t	Cance	el l
30															10015	Jeree		conce	
31																			
33																			
34																			
35																			
36																			
37																			
38																			
39																			
40																			
41																			
42																			
43																			
44		_																	
	Lookup Tables Inpu	t Files	XS Geometry	Ineffective Flo	w Areas XS V	VSE XS Report	Road Data	Asset Location	Asset XS	Input Eleva	tions	Ranked A	sset Flows	Bridge	e Analysis	Culvert Ar	nalysis	Valley	Storage

Running Tools to Generate Model Results

- Two Modes:
 Cross Sections Only
 Evaluate Analysis
 - Full Asset Analysis
- Simulation Parameters —

rearing	Extension	Date accessed	Dute mounieu	Date created					Exclude					_			
BridgeCulverts_AS_PR.csv	.CSV	7/26/2021 2:29	11/2/2020 15:01	7/26/2021 2:29	C:\Users\enrigh	tp\Documents\Lo	ocal Temp\HEC-RAS	Interface\Data\			Soloct Sol	irco Data	-				
BridgeCulverts_AS_PT.csv	.CSV	7/26/2021 2:29	10/6/2020 16:29	7/26/2021 2:29	C:\Users\enright	itp\Documents\Lo	ocal Temp\HEC-RAS	Interface\Data\			Select Sot	ince Data	<u> </u>	10.00			
BridgeCulverts XS_PR.csv	.CSV	7/26/2021 2:29	11/2/2020 15:02	7/26/2021 2:29	C:\Users\enright	itp\Documents\Lo	ocal Temp\HEC-RAS	Interface\Data\							Dun A	nalvoia	
BridgeCulverts_XS_PT.csv	.CSV	//20/2021 2.23	10/5/2020 16:20	7/26/2021 2:29	C:\Users\enright	itp\Documents\Lo	ocal Temp\HEC-RAS	Interface\Data\		Type of	f Analysis	Cross-Sect	one Only		Kull A	riarysis	
Bridges_AS_PR - Copy.csv	.CSV	7/26/2021 2:29	1/19/2021 22:38	7/26/2021 2:29	C:\Users\enright	itp\Documents\Lo	ocal remp\nee-ka	Interface\Data\		To Perf	orm:	CIUSS-SECO	onsoniy				
Bridges_AS_PR_Rev1-B_67805.csv	.CSV	7/26/2021 2:29	1/19/2021 8:47	7/26/2021 2:29	C:\Users\enright	itp\Documents\Lo	ocal Temp\HEC-RAS	Interface\Data\				Full Asset	Analysis				
Bridges_AS_PT.csv	.CSV	7/26/2021 2:29	10/6/2020 16:29	7/26/2021 2:29	C:\Users\enright	itp\Documents\Lo	ocal Temp\HEC-RAS	Interface\Data\									
Bridges_XS_PR - Copy.csv	.csv	7/26/2021 2:29	1/19/2021 8:52	7/26/2021 2:29	C:\Users\enright	itp\Documents\Lo	ocal Temp\HEC-RAS	Interface\Data\		Perform	n Geomorp	hic Exposure	Analysis				
Bridges_XS_PR_Rev1-B_67805.csv	.CSV	7/26/2021 2:29	1/19/2021 8:47	7/26/2021 2:29	C:\Users\enright	itp\Documents\Lo	ocal Temp\HEC-RAS	Interface\Data\		For All	Cross-Secti	ons:					
Bridges_XS_PT.csv	.csv	7/26/2021 2:29	10/6/2020 16:29	7/26/2021 2:29	C:\Users\enright	itp\Documents\Lo	ocal Temp\HEC-RAS	Interface\Data\				Ye	S NO				
Pipes_AS_PR.csv	.CSV	7/26/2021 2:29	11/2/2020 15:04	7/26/2021 2:29	C:\Users\enright	itp\Documents\Lo	ocal Temp\HEC-RAS	Interface\Data\									
Pipes_AS_PT.csv	.csv	7/26/2021 2:29	10/6/2020 16:29	7/26/2021 2:29	C:\Users\enright	itp\Documents\Lo	ocal Temp\HEC-RAS	Interface\Data\									
Pipes_XS_PR - Copy.csv	.CSV	7/26/2021 2:29	4/5/2021 17:31	7/26/2021 2:29	C:\Users\enrigh	itp\Documents\Lo	ocal Temp\HEC-RAS	Interface\Data\									
Pipes_XS_PR_Rev1-P_2244848.csv	.CSV	7/26/2021 2:29	4/5/2021 14:43	7/26/2021 2:29	C:\Users\enrigh	itp\Documents\Lo	ocal Temp\HEC-RAS	Interface\Data\									
Pipes_XS_PT.csv	.CSV	7/26/2021 2:29	4/5/2021 17:20	7/26/2021 2:29	C:\Users\enrigh	itp\Documents\Lo	ocal Temp\HEC-RAS	Interface\Data\									
										20	feet	Asset cro	ss section	offset			
										500	feet	XS chann	el buffer z	one			
	-									750	feet	Asset zo	ne of inter	est			
										10	Current	Bank Sta	tion Scena	ario			

• User must specify which cross sections / assets to analyze

"VC M/CE" choot		A	В	С	D
AS WSE Sheet.	1	XS Water Surface	Elevation Ou	tput Table	
	2	XSID	Analyze	LB_Sta 💌	RB_Sta 💌
	3	B_19094_XS_DS	TRUE		
	4	B_19094_XS_US	TRUE		
	5	B_23005_XS_DS			
	6	B_23005_XS_US			

"Output" choot		Α	В		C	
Output sneet.	1	Asset Out	put Table			
	2	AssetID 3	Structure Category	-	Analyze	-
	З	B_19094	Bridge			
	4	B_23005	Bridge		TRUE	
	5	B_33004	Bridge			

• Visual Basic > Tools > References > HEC River Analysis System

Review of Model Results and Output

- Cross Section Output Table:
 - Left and Right Bank Stations

	A		В			С			D	
1	XS Water Surfac	e E	levation (Dut	put 1	[able	e			
2	XSID	Ŧ	Analyze	٣	LB_	Sta	٣	RB	Sta	•
3	B_19094_XS_DS		TRUE							
4	B_19094_XS_US		TRUE							
5	B_23005_XS_DS									
6	B_23005_XS_US									

- Cross Section Report Table:
 - 1. Raw model-predicted WSE
 - 2. Overflow depths (left and right)
 - 3. Adopted WSE (deducts overflow depth)
 - 4. High-level geomorphic output (if run)
 - 5. Management of outliers

		1		2	3				4						(5		
A	3 C	D	E	F	G	Н			K	L	М	N	0	Р	0	R	S T	U
1 XS Simulation Report Table																		
2 XSID 🔽 Scenari	o 🛛 💌 Flow (cfs) 📘	🕶 WSE (ft) 🛛	Left Overflow (ft)	Right Overflow (ft)	Adopted WSE (ft) 💌 🕅	/elocity (ft/s) 💌	Shear (lb/sf) Ave. 💌	Shear (Ib/sf) LOB 💌	Shear (Ib/sf)Channel 🛛 💌	Shear (Ib/sf) ROB 💌	Rank 💌 F	Rankindex 💌	Min 💌	Max 💌 f	Rolling 💌 Ste	dDev 💌	Unexpected 💌 Outlier 💌	Interpolated WSE (ft)
3 B_19094_XS_DS 1.5_Cu	rrent 35	4 890.383117	7		890.3831177	1.512874484	0.04630594	3.4E+38	0.04630594	3.4E+38	56	56		890.72				890.3831177
4 B_19094_XS_DS 2_Curr	ent 50	9 890.716064	5		890.7160645	1.405277729	0.053622641	3.4E+38	0.053622641	3.4E+38	55	55	890.38	890.81				890.7160645
5 B_19094_XS_DS 5_Curr	ent 101	0 891.400451	7		891.4004517	1.480014443	0.098738134	3.4E+38	0.098738134	3.4E+38	48	48	891.19	891.46	891.32	0.20		891.4004517
6 B_19094_XS_DS 10_Cur	rent 144	0 891.848327	6		891.8483276	1.60703671	0.126554847	0.001635383	0.128079638	0.003822589	41	41	891.71	891.90	891.80	0.14		891.8483276
7 B_19094_XS_DS 25_Cur	rent 208	0 892.399047	9		892.3990479	1.773444772	0.155643135	0.020266084	0.165764078	0.025404261	34	34	892.10	892.45	892.29	0.21		892.3990479
8 B_19094_XS_DS 50_Cur	rent 263	0 892.808349	6		892.8083496	1.897061229	0.179681972	0.034114756	0.193790957	0.044210173	27	27	892.64	892.86	892.75	0.15		892.8083496
9 B_19094_XS_DS 100_Cu	rrent 326	0 893.228271	5		893.2282715	2.024459839	0.204956576	0.048382174	0.222814068	0.06408713	20	20	893.05	893.27	893.17	0.15		893.2282715
10 B_19094_XS_DS 500_Cu	rrent 491	.0 894.18225	1		894.182251	2.28883791	0.249212623	0.074285664	0.288012981	0.082876876	7	7	893.87	894.23	894.07	0.22		894.182251

Review of Model Results and Output Cont.

1396.068589

1478 653756

1423.863439

1449.92987

1400.472801

3869 495098

896.9721416

878 4865767

949.432117

1059.342554

1134.025955

1438 340881

1516.113715

1562 744197

1570.38727

1645.84005

1520.22297

4072 405849

896.3054749

877 6719441

949.8163034

1060.176215

1132.243475

1438 140094

1456.091152

1520 698977

1497.125355

1547.88496

1460.347886

3970 950474

• Asset Output Table:

- 1. Error messages
- 2. Abutment geometry
- 3. Vertical geometry

• Asset Report Table:

- 1. Base WSE (culverts only)
- 2. Modified WSE (culverts only)
- 3. Modified Flow (culverts only)
- 4. Raw model-predicted WSE
- 5. Overflow depths (left and right)
- 6. Adopted WSE (deducts overflow depth)

Asset Output Table AssetID V Structur B 19094 Bridge

B_23005 Bridge

B_33004 Bridge

6 B_38009 Bridge

7 B_6502 Bridge

8 B 67805 Bridge

				1	2	3		4		5	6
	А	В	С	D	E	F		G	Н		J
1	Asset Sim	ulation Report T	able								
2	AssetID	Scenario 💌	Flow (cfs) 💌	Base WSE (ft) 💌	Mod WSE (ft)	Modified Flow (cfs)	-	WSE (ft) 💌	Left Overflow (ft) 💌	Right Overflow (ft)	Adopted WSE (ft)
З	B_19094	1.5_Current	355		0		0	890.4884033			890.4884033
4	B_19094	2_Current	510		0		0	890.8418579			890.8418579
5	B_19094	5_Current	1010		0		0	891.6272583			891.6272583
6	B_19094	10_Current	1440		0		0	892.157959			892.157959
7	B_19094	25_Current	2080		0		0	892.8291626			892.8291626
8	B_19094	50_Current	2630		0		0	893.3410034			893.3410034
9	B_19094	100_Current	3260		0		0	893.8786011			893.8786011
10	B_19094	500_Current	4920		0		0	895.2937012			895.2937012

896.6388083 961.1049974 895.7142675 894.2258083

878 0792604 2311 555859 871 2280463 874 5792604

949.6242102 1378.41829 949.2959621 946.9572102

1059.759385 1436.834635 1059.333367 1054.29138

1133.134715 2023.467599 1126.729039 1127.978515

1438 240488 4811 899204 1436 812994 1435 440488

3

-11.355496

-12 9370765

31.0628485

-72.8071265

-1 5E-06

41.915291

110.3

70

82.1

72.2

81.1

896.3054749

877 6719441

949.432117

1059.342554

1132.243475

1438 140094

893.8924749 895.71426

874 1719441 871 228046

946.765117 949.29596

1127.087275 1126.72904

1435 340094 1436 81299

1059.3333

1053.874554

Exporting Hydraulic Model Outputs

- Once user has reviewed model results, outputs can be exported to GIS
- Query combines all asset outputs into single table on "GIS" sheet

	A	В	С	D	E	F	G	Н	I. I.	J
1	AssetID	PXS_Reach_Length	LeftAbutSta 💌	RightAbutSta 💌	HighChordMin 💌	LowChordMin 💌	RoadMin 💌	MaxGWD 💌	DSPXS_WSE_100_Crnt	DSPXS_WSE_100_Early_45
2	B_19094	110.3	1396.068589	1516.113715	896.3054749	893.8924749	895.7142675	0	893.355835	893.4006958
3	B_23005	72	1478.653756	1562.744197	877.6719441	874.1719441	871.2280463	0	875.2835083	875.3776855
4	B_33004	78.1	1423.863439	1570.38727	949.432117	946.765117	949.2959621	0	945.7420654	945.7876587
5	B_38009	82.1	1449.92987	1645.840053	1059.342554	1053.874554	1059.333367	0	1051.284912	1051.40564
6	B_6502	72.2	1400.472801	1520.22297	1132.243475	1127.087275	1126.729039	0	1132.806152	1132.87915
7	B_67805	81.1	3869.495098	4072.405849	1438.140094	1435.340094	1436.812994	0	1430.547852	1430.56665

• Export steps:

- 1. Refresh "Asset_Results_Export" query table
- 2. Copy contents of query table to blank workbook
- 3. Save As a .csv file type

Incorporating Hydraulic Model Outputs in GIS (Phase 1)

Gregg Cornetski

Example of Exposure

- Join hydraulic model output metrics table to GIS data: to the stream crossing asset point and to its road profile.
- For example, determine the depth of flooding at each point along the roadway
 - Here the depth during 500-year return period flow event, late-century, RCP 8.5

Preparation of Risk Model Asset Data Inputs (Phase 2)

Josh Amos

Roadway Physical Characteristics for Costing

- Lane count and width
- Pavement material and condition (e.g., asphalt, concrete)
- Shoulder type and width (e.g., gravel, curbs, paved)
- Median type and width, (e.g., high-tension flexible cables)
- AADT, car and truck
- Embankment presence, volume and material
- Federal functional classification (assists with gap-filling missing data)
- Fixed costs (used for debris cleanup and mobilization)

Geoprocessing routines to attribute roadway centerlines with HPMS attributes

🖃 🜍 Toolbox

- Ҏ Model 0. Process AADT
- Model 0.1_Process_MnDOT_Supplied_Event_Tables
- Model 0.2_Take Most Recent Survey
- Model 1. Overlay Route Events
- Ҏ Model 2. Separate D and I Routes
- P Model 2.1 Manual Step to Remove Stacked Routes that Affect the AADT Transfer via Mixed Route
- P Model 3. Planarize D Routes
- P Model 4. Planarize l Routes
- P Model 5. Trunk Routes Planarize & Create Intersection to Intersection ID
- P Model 6. Bring together D and I Routes
- Model 7. Script to Find Nearest Corresponding D or I Route
- Ҏ Model 8. Attribute aadt to Planarized Routes
- Model 9.2 Collect Values
- Ҏ Model 9.3 Transfer AADT
- 🔤 Model 9.4 Attribute aadt to remaining roads
- P Model 9.5. Compute AADT
- Model 9.6. Update AADT Calculations

Culvert and Bridge Physical Characteristics for Costing

- Culverts:
 - Presence of riprap apron
 - Barrel count, shape (e.g., box, pipe arch), height, width
 - Material and condition
- Bridges:
 - Main span (e.g., beam span steel, deck girder concrete)
 - Structure type (e.g., timber footing pile, concrete footing pile)
 - Presence of piers
 - Pavement material and condition

*Primarily from MnDOT asset management databases & NBI

Relate Physical Asset Characteristics to Unit Costs

- Given asset's physical characteristics, estimate a repair and replacement cost
- Embankment fill example
 - Unit cost was estimated to be \$13.19 per cubic yard.
 - Weighted average cost of item numbers 2106507/00130 (assumed to comprise 10% of the embankment volume) and 2106507/00080 (assumed to comprise 90% of the embankment volume)

Average Bid Prices for Awarded Contracts Pag State Aid Projects Not Included 1/1/2020 to 12/31/2020													
tem Group	ltem Number	Item Description	Units	Quantity	Dollars (000S)	Average Price	Contra Occur.	ct					
105	2105609/00125	HAUL AND DISPOSE OF LEAD CONTAMINATED SOIL	TON	320.00	\$30.40	\$95.00		1					
105	2105609/00126	HAUL AND DISPOSE OF MERCURY CONTAMINATED SOIL	TON	166.00	\$125.33	\$755.00		1					
105	2105609/00128	HAUL AND DISPOSE OF EXCAVATED MATERIAL	TON	43,200.00	\$475.20	\$11.00		1					
105	2105609/00130	EXCAVATION SPECIAL	TON	19,245.00	\$167.43	\$8.70		5					
105	2105619/00020	MINOR GRADING	RDST	554.00	\$44.32	\$80.00		1					
					\$0.00	-							
tem Group	ltem Number	Item Description	Units	Quantity	Dollars (000S)	Average Price	Contra Occur.	ct					
106	2106507/00010	EXCAVATION - COMMON	CY 2	,469,397.80	\$19,532.94	\$7.91	9	9					
106	2106507/00025	EXCAVATION - ROCK	CY	80.00	\$20.40	\$255.00		1					
106	2106507/00030	EXCAVATION - MUCK	CY	48,491.00	\$470.85	\$9.71	1	8					
106	2106507/00040	EXCAVATION - SUBGRADE	CY	191,797.00	\$1,764.53	\$9.20	1	6					
106	2106507/00050	EXCAVATION - CHANNEL AND POND	CY	91,604.00	\$1,149.63	\$12.55		6					
106	2106507/00070	GRANULAR EMBANKMENT (CV)	CY	44,258.00	\$729.81	\$16.49	1	7					
106	2106507/00080	SELECT GRANULAR EMBANKMENT (CV)	CY	841,392.00	\$11,829.97	\$14.06	4	7					
106	2106507/00090	SELECT GRANULAR EMBANKMENT MOD 5% (CV)	CY	37,350.00	\$616.28	\$16.50		1					
106	2106507/00100	SELECT GRANULAR EMBANKMENT MOD 7% (CV)	CY	185,660.00	\$5,575.37	\$30.03	1	8					
106	2106507/00110	SELECT GRANULAR EMBANKMENT MOD 10% (CV)	CY	52,250.00	\$1,149.50	\$22.00	1	1					
106	2106507/00120	SELECT GRANULAR EMBANKMENT SUPER SAND (CV)	CY	80,314.00	\$1,905.85	\$23.73	1	8					
106	2106507/00130	COMMON EMBANKMENT (CV)	CV 1	656 307 00	\$8,878,20	\$5.36	0	6					

Approach Roadway Risk Model Costing Preparation

<u> </u>	-	- · ·		0 10 1			ч 			0	N	<u> </u>									-
Modeled Asset	I Deuse Label	Road	Clean u	p Costs (fixed o	costsJ	Dual Carda as Maril Ra	Uri Dri de Carlo	iving Surface	umber all an en ll		This has a set for the	Drivir - Material	ng Surface – Pa	vement Layer	I Tabal Ca	-) This	lan an Caraban M	Uriving Surfac	e - Pavemen	it Layer Z	TabalCast
msseciu R 19094	MN 3	Minor Arterial	Debris Clea	an op or mobilizati \$2,182	20°/	oual camage way be	gment Length (1 30 960	anace Area (sq fi I) 23 042	under or Lanes L	ane wioth 12	7 THICKNESS (INCh	5 Bituminour	Pavement L	\$42 caused	Total Lo	\$107.428	Kiness (inches Ma A Da	atenal Pav	ement Layer I L	Driits Cubio Marda	10(al-Cost \$10,390
D_13034	MN 2	Minor Arterial		φ2,102 ¢1.022	20%		450	20,042	1	12	2 7	5 Bituminous		\$42 sq yarus \$42 aq yarus		\$101,420 \$E0.257	4 DI 4 Bi	tuminous	430 0	Cubie Varda	\$10,000 \$4,966
3 19094	MN 3	Minor Arterial		\$886	20%		390	9.361	1	12	2 7	5 Bituminous		\$42 sq yards		\$43,642	4 Bi	tuminous	\$36 /	Cubio Yards	\$4,000
3 19094	MN 3	Minor Arterial		\$1568	20%		000	16 562	1	12	2 7	5 Bituminous		\$42 sq yards		\$77,214	4 Bi	tuminous	\$36 /	Cubio Yards	\$7.461
3 19094	MN 3	Minor Arterial		\$68	20%		30	720	1	12	2 7	5 Bituminous		\$42 squards		\$3.357	4 Bi	tuminous	\$36 (Cubic Yards	\$324
3 19094	MN 3	Minor Arterial		\$68	20%		30	720	1	12	2 7	5 Bituminous		\$42 squards		\$3,357	4 Bi	tuminous	\$36 (Cubic Yards	\$324
19094	MN 3	Minor Arterial		\$818	201/		360	8 641	1	12	2 7	5 Bituminous		\$42 squards		\$40,285	4 Bi 4 Bi	tuminous	\$36 (Cubic Yards	\$3,893
19094	MN 3	Minor Arterial		\$205	20%		90	2 160	1	12	2 7	5 Bituminous		\$42 sq yards		\$10.071	4 Bi	tuminous	\$36 /	Cubic Yards	\$973
23005	MN 43	Major Collector	1 3	\$6,988	20%		3.075	73 796	1	12	2	8 Bituminous		\$55 squards		\$454 827	2 Bi	tuminous	\$36 /	Cubic Yards	\$16.622
33004	MN 70	Major Collector		\$6.818	20%		3.000	72.000	1	12	2	8 Bituminous		\$55 sq yards		\$443,762	5 Bi	tuminous	\$36 /	Cubic Yards	\$40,545
38009	MN1	Minor Arterial		\$6.919	20%		3.044	73.062	1	12	2 1	5 Bituminous		\$55 Assume 6	and 145	\$145.641	18 Bi	tuminous	\$36 (Cubic Yards	\$148.112
6502	MN 32	Minor Arterial		\$2,869	20%		1.262	30,293	1	12	2 1	.5 Bituminous		\$55 Assume 6	and 145	\$60,386	8 Bi	tuminous	\$36 (Cubic Yards	\$27,294
6502	MN 32	Minor Arterial		\$683	20%		301	7.213	1	12	2 1	.5 Bituminous		\$55 Assume 6	and 145	\$14,378	8 Bi	tuminous	\$36 (Cubic Yards	\$6,498
6502	MN 32	Minor Arterial		\$2,869	20%		1.262	30,293	1	12	2 1	.5 Bituminous		\$55 Assume 6	and 145	\$60,386	8 Bi	tuminous	\$36 f	Cubic Yards	\$27,294
6502	MN 32	Minor Arterial		\$410	20%		180	8,655	1	24	4 1	.5 Bituminous		\$55 Assume 6	and 145	\$17,253	8 Bi	tuminous	\$36 (Cubic Yards	\$7,798
67805	190	Principal Arterial -	\$	17,672	20% [Dual Carriageway	3,888	186,611	2	24	4	9 Bituminous		\$81 sq yards	\$	1,678,464	5.25 Bi	tuminous	\$36 (Cubic Yards	\$110,338
67805	190	Principal Arterial -		\$361	20% [Dual Carriageway	79	3,808	2	24	4	9 Bituminous		\$81 sq yards		\$34,254	5.25 Bi	tuminous	\$36 (Cubic Yards	\$2,252
67805	190	Principal Arterial -	\$	16,950	20% [Dual Carriageway	3,729	201,369	2	27	7	9 Concrete		\$81 sq yards	4	1,811,200	5.25 Co	oncrete	\$36 (CubicYards	\$119,064
_67805	190	Principal Arter	A	0	1	v i Švi	×	Ý	4	AA	AB	AC	AU	AÉ	ÄF	AG	AH	Al	AJ	AK	AL
_67805	190	Principal Arter	odeled Asse	Description	Utable	Median	and Tatal Cast	Description	Curbs	Tetel Cent	Description	Clable (b)	Left Shoulder	Hels Caret	Tetal Cost	Description	Coulds (fai)	Hight Shoulder	(Jak Cast	TetalCent	Embankment F
_4108	MN 18	Minor Arterial B	19094	Description	width	Unit Cost (¥/lin	iean Total Cost	Description	Unit Cost (Anihear I	rotalCost	Description	width (rt)	Jurrace Area (Jq/	Unit Cost	rotalCost	Description	width (rt)	Jurrace Area (Oqf) (JIIICOSt	rotalCost	6 223
_4108	MN 18	Minor Arterial B	19094																	+	2,917
_424	MN 1	Minor Arterial B	19094																		2,528
5648	MN 61	Principal Arter B_	19094																		4,473
5648	MN 61	Principal Arter B.	19094																		194
5648	MN 61	Principal Arter B.	19094																		194
_5648	MN 61	Principal Arter	19094																		2,334
_5648	MN 61	Principal Arter	19094 2200E	_																	583
_5648	MN 61	Principal Arter	23005	_																	8 994
_5722	US 63	Principal Arter B	38009													bituminous con	cre	3 1015 <	surface 3" denth/	\$ \$2132	26 763
_8566	MN 60	Minor Arterial B	6502													bituminous con	ore	2 280 s	surface 3" depth f	\$ \$5,89	3 0
91285	MN 23	Principal Arter B	6502													bituminous con	ore	2 67 s	surface 3" depth #	\$ \$1,40	4 0
2195327	MN 95	Minor Arterial B	6502													bituminous con	ore	2 280 9	surface 3" depth ₹	\$\$5,89	÷ 0
_2195327	MN 95	Minor Arterial B.	.6502					Raised 6"	\$29	\$10,383	3			surface 3" depth \$	54.97; base 6" dep	oth \$40.00					0
_2195327	MN 95	Minor Arterial B	67805								bituminous concre		3 1,296	surface 3" depth \$	\$27,235	bituminous con	cre	10 4,320 s	surface 3" depth \$	\$ \$90,79	/ 9,057
_2195327	MN 95	Minor Arterial B	67905	_							bituminous concre		3 1243	surrace 3 depths	\$000 \$26,127	bituminous con	ore	U 00 1	surface 3 depth a	≱ \$1,00- ¢ ¢69.67	2 9,697
2195327	MN 95	Minor Arterial B	67805								bituminous concre		3 26	surface 3" depth 3	#20,121 \$556	bituminous con	ore	8 71	surface 3" depth (\$ \$148	2 185
2195327	MN 95	Minor Arterial B	67805								Dicaminious conton		0 20	bandoe or departs	+000	bituminous con	cre	8 141	surface 3" depth ?	\$ \$2,96	5 370
		C	4108													bituminous con	ore	7 1,727 s	surface 3" depth ?	\$ \$36,29	3 0
		C_	4108													bituminous con	ore	7 607 s	surface 3" depth \$	\$ \$12,75	2 0
		C_	424													bituminous con	ore	2 683 s	surface 3" depth \$	\$ \$14,35	3 8,281
		C_	5648													bituminous con	ore	4 393 s	surface 3" depth \$	\$ \$8,26	+ 0
		C_	5648													bituminous con	cre	4 502 s	surface 3" depth \$	\$ \$10,544	
			.3040 5648													bituminous con	ore	3 010 s	surface 3 depth a	* *12,024 * *256	
		<u>c</u>	5648													bituminous con	ore	9 31	surface 3" depth (\$ \$60	1 0
		 C	5648													bituminous con	cre	9 275	surface 3" depth f	\$ \$5,77	1 0
		C	5722					Raised 6"	\$29	\$141,320	D										0
		C_	8566													bituminous con	ore	2 669 s	surface 3" depth \$	\$\$14,06	4 35,159
		C_	91285													bituminous con-	ore	10 3,334 s	surface 3" depth \$	\$ \$70,06	3 34,934
		P.	2195327		_			_								bituminous con-	ore	6 183	surface 3" depth \$	\$\$3,843 *	1,057
		P.	2195327		-											bituminous con	ore	6 20 -	urrace 3 depth \$	a an	7 470 a 115
		P_ D	2195327	1				-			1					bituminous con	ore	6 20 s	surface 3" depth ¥	, ¥4∦ \$\$256	2 705
		P	2195327		-											bituminous con	ore	5 356	surface 3" denth?	\$ \$7.47	2,466
		P	2195327													bituminous con	ore	5 85 5	surface 3" depth f	\$ \$1,77	3 587
		P	2195327													bituminous con	cre	5 406 s	surface 3" depth f	\$ \$8,54	J 2,818
		P.	2195327													bituminous con	cre	6 20 s	surface 3" depth \$	\$ \$42	/ 117
		P_	2195327													bituminous con	cre	6 325 s	surface 3" depth \$	\$ \$6,83	1,879
		P_	2195327	.							I					bituminous con	ore	6 265 s	surface 3" depth \$	\$\$5,56	J 1,529

Total Replacement Costs: Approach Roadway Risk Model

Roadway Risk Model Total Replacement Cost

Asset ID	AAADT Car	AAADT Truck	Embankment Fill	Debris Clean up	Driving Surface Layer 1	Driving Surface Layer 2	Driving Surface Layer 3	Median	Left Shoulder	Right Shoulder	All Pavement Material
B_19094	12,200	439	\$237,656	\$3,674	\$180,859	\$17,476				\$12,308	\$210,643
B_23005	580	85	\$155,617	\$3,631	\$236,319	\$8,637				\$3,041	\$247,997
B_33004	950	80	\$105,738	\$3,766	\$245,094	\$22,393				\$3,154	\$270,641
B_38009	880	75	\$328,879	\$3,882	\$81,713	\$83,100				\$16,844	\$181,657
B_6502	2,066	324	\$19,285	\$3,692	\$77,716	\$35,127				\$10,680	\$123,523
B_67805	5,050	775	\$175,064	\$7,757	\$1,566,095	\$102,951			\$11,956	\$35,847	\$1,716,850
C_4108	4,550	425	\$210,950	\$3,409	\$71,763	\$58,790				\$24,523	\$155,077
C_424	330	50	\$99,329	\$3,410	\$221,934	\$12,166				\$7,008	\$241,108
C_5648	6,513	329	\$499,396	\$3,399	\$73,262	\$47,600				\$17,314	\$138,176
C_5722	5,800	1,000		\$3,407	\$481,136	\$26,340	\$19,755			\$0	\$613,555
C_8566	5,500	475	\$444,060	\$3,410	\$221,943	\$31,431				\$17,006	\$270,380
C_91285	2,700	470	\$424,151	\$3,408	\$71,749	\$72,966				\$35,025	\$179,740
P_2195327	7,400	610	\$138,156	\$3,379	\$87,659	\$34,668				\$19,769	\$142,096
P_2206647	8,300	2,125	\$411,164	\$6,795	\$1,452,250	\$95,468		\$70,116	\$10,475	\$27,932	\$1,656,241
P_2244848	1,800	175	\$7,384	\$3,405	\$77,640	\$6,580				\$4,278	\$88,497
P_2251120	3,450	550	\$198,806	\$3,412	\$71,817	\$73,035				\$35,059	\$179,911
P_2261376	790	105	\$40,776	\$3,404	\$221,560	\$4,049				\$2,851	\$228,460
P_2286414	435	35	\$96,810	\$3,409	\$59,808	\$40,549				\$10,511	\$110,868
P_2295972	3,000	235	\$63,374	\$3,412	\$71,819	\$36,519				\$10,518	\$118,856
P_2298309	5,050	775	\$235,513	\$6,811	\$1,293,784	\$85,050			\$13,997	\$34,994	\$1,427,825
P_2311335	650	185	\$209,898	\$3,405	\$71,683	\$42,524				\$5,705	\$119,912
P_2402064	1,450	85	\$71,103	\$3,399	\$258,131	\$42,452				\$2,848	\$303,430
Total	79,444	9,407	\$4,173,110	\$87,676	\$7,195,734	\$979,871	\$19,755	\$70,116	\$36,428	\$337,215	\$8,725,443

Total Replacement Costs: Bridges, Bridge-Culverts, and Pipes

Bridges

AssetID	Structure Type	Bridge Unit Cost (sq ft)	Bridge Total Replacement Cost	Bridge Superstructure Replacement Cost	Bridge Substructure Replacement Cost	MAINSPANS	Foundation Description	ABUT FND	PIER FND	HighChordMin	LowChordMin	STUCT LEN	DECKWIDTH	Paved Surface Area SqFt	Wear Surf Type
B_19094	Slab	\$176	\$1,555,778	\$1,166,833	\$388,944	3	CONC FTG PILE	CONC FTG PILE	CONC FTG PILE	896	894	126	70	8,453	LOW SLUMP CONC
B_23005	Tee-Beam	\$176	\$269,568	\$202,176	\$67,392	1	STEEL PILE BENT	STEEL PILE BENT	N/A	878	874	48	32	1,442	LOW SLUMP CONC
B_33004	Slab	\$176	\$927,424	\$695,568	\$231,856	3	CONC FTG PILE	CONC FTG PILE	CIP PILE BENT	949	947	139	38	4,822	LOW SLUMP CONC
B_38009	Tee-Beam	\$176	\$1,157,047	\$867,785	\$289,262	2	CONC SPRD ROCK	CONC SPRD ROCK	CONC SPRD ROCK	1,059	1,054	157	42	6,071	LOW SLUMP CONC
B_6502	Girder	\$176	\$805,282	\$603,961	\$201,320	3	TIMBER FTG PILE	TIMBER FTG PILE	CONC SPRD SOIL	1,132	1,127	143	32	4,133	LOW SLUMP CONC
B_67805	Slab	\$176	\$1,399,332	\$1,049,499	\$349,833	3	CONC FTG PILE	CONC FTG PILE	CONC FTG PILE	1,438	1,435	i 194	41	7,333	LOW SLUMP CONC

Bridge-culverts

AssetID	Culvert Barrel Unit Cost Item Number	Pipe Barrel Unit Cost (sq ft)	C <mark>ulvert Barrel Cos</mark> t	Culvert End Section Item Number	Culvert End Section Unit Cost	Culvert End Section Cost	Culvert Total Replacement Cost	RipRap_Apron_Flag CulvertSha	BarrelsHei	BarrelsNum BarrelsWid	MAIN_SPAN_	CULVRATING
C_4108	2412503/10040	\$949.08	\$67,384.68	2412502/10040	\$10,560.00	\$21,120.00	\$88,504.68	0 Box	4	1 10	113 - Box Culvert Concrete	4
C_424	2501503/15017	\$41.00	\$3,034.00	N/A	\$0.00	\$0.00	\$3,034.00	1 Pipe Arch	10	1 16	315 - Pipe Arch Steel	5
C_5648	2412503/10100	\$807.86	\$106,637.52	2412502/10100	\$18,856.67	\$37,713.34	\$144,350.86	1 Box	10	2 10	113 - Box Culvert Concrete	5
C_5722	2412503/12060	\$1,050.00	\$70,350.00	2412502/16120	\$30,000.00	\$60,000.00	\$130,350.00	1 Box	6	5 3 12	113 - Box Culvert Concrete	5
C_8566	2412503/10060	\$943.51	\$126,430.34	2412502/16100	\$19,000.00	\$38,000.00	\$164,430.34	1 Box	6	5 1 10	113 - Box Culvert Concrete	6
C_91285	2501503/14017	\$25.00	\$2,950.00	N/A	\$0.00	\$0.00	\$2,950.00	1 Pipe Arch	9	9 1 10	515 - Pipe Arch Prestress or Precast	6

Pipes

AssetID	Culvert Unit Cost Item Number	Pipe Barrel Unit Cost (sq ft)	Culvert Barrel Cost	Culvert End Section Item Number	Culvert End Section Unit Cost	Culvert End Section Cost	Culvert Total Replacement Cost	RipRap Apron Flag CulvertSha	BarrelsHei	BarrelsNum	BarrelsWid P	ipe Shape	Material	Condition
P_2195327	2501503/12036	\$90.22	\$6,676.28	N/A		\$0.00	\$6,676.28	1 Pipe Round	3	1	3 R	Round	Liner HDPE	1 - Like New
P_2206647	2501503/19732	\$311.11	\$52,888.70	N/A		\$0.00	\$52,888.70	1 Pipe Arch	3	1	5 A	Arch	Concrete	2 - Fair
P_2244848	2501503/12024	\$53.31	\$2,132.40	N/A		\$0.00	\$2,132.40	0 Pipe Round	2	1	2 R	Round	Corg. Steel (CSP)	0 - Unable to Inspect
P_2251120	2501503/19732	\$311.11	\$22,399.92	N/A		\$0.00	\$22,399.92	0 Pipe Arch	6	1	4 C	CattlePass	Concrete	3 - Poor
P_2261376	2501503/12072	\$159.00	\$6,678.00	N/A		\$0.00	\$6,678.00	1 Pipe Ellipse	6	1	4 E	lliptical	Corg. Steel (CSP)	4 - Severe
P_2286414	2501503/12015	\$51.51	\$2,575.50	N/A		\$0.00	\$2,575.50	0 Pipe Round	2	1	2 R	Round	Corg. Plastic (HDPE)	1 - Like New
P_2295972	2501503/19882	\$655.00	\$31,440.00	N/A		\$0.00	\$31,440.00	1 Pipe Arch	5	1	7 A	Arch	Concrete	2 - Fair
P_2298309	2501503/13602	\$290.00	\$49,590.00	N/A		\$0.00	\$49,590.00	1 Pipe Round	5	1	5 R	Round	Concrete	3 - Poor
P_2311335	2412503/06060	\$950.00	\$40,850.00	2412502/06060	\$20,000.00	\$40,000.00	\$80,850.00	0 Box	6	1	6 B	Box	Concrete	2 - Fair
P_2402064	2501503/19882	\$655.00	\$39,300.00	N/A		\$0.00	\$39,300.00	1 Pipe Arch	5	1	7 A	Arch	Concrete	1 - Like New

Preparation of Risk Model User Data Inputs (Phase 2)

Tim Grose

Background on Approach

- Development of user impact data relies on a GISbased detour routing tool
- Detour tool is implemented with Python scripts
- Uses ArcPy package for ArcGIS functionality
- Requires ArcGIS for Desktop license and ArcGIS Network Analyst license
- Uses free version of ESRI Streets network dataset for routing
- To run the tool, MNDOT assets must be associated with segments on a modified version of this network dataset (see right).

Running the Detour Tool

- Run mndot_detour_controller_00.py script (need to adjust some variable assignments in the script, such as folder path)
- This produces detour and non-detour routes (green and red shown in example on right)
- Manually review
- Run mndot_detour_postprocess.py script (need to adjust some variable assignments in the script, such as folder path)
- Manual detours in Google Maps when needed
- Output of automated and manual detours is incremental detour length and time for each asset

Calculation of User Costs

Inputs	Units	Value	Notes
Real Discount Rate	Percent	0.7%	https://www.dot.state.mn.us/planning/program/pdf/Table%20A.1%20SV%20L-ML-H%201-July-2021.pdf
Analysis Start	Date	1/1/2021	
Analysis End	Date	1/1/2100	
Auto Value of Time (VOT)	\$/person hour	\$ 22.50	https://www.dot.state.mn.us/planning/program/pdf/Table%20A.1%20SV%20L-ML-H%201-July-2021.pdf
Truck VOT	\$/person hour	\$ 33.60	https://www.dot.state.mn.us/planning/program/pdf/Table%20A.1%20SV%20L-ML-H%201-July-2021.pdf
Value of Time Year	Date	1/1/2021	See previous
			Only for adjusting Value of Time for analysis year. Not used in expected cost calculation. Calculated using average annual percent
Inflation Rate	Percent	1.9%	increase in US BLS CPI-U over past ten years. https://data.bls.gov/pdq/SurveyOutputServlet
Auto Operating and Emissions cost	\$/mile	\$ 0.34	https://www.dot.state.mn.us/planning/program/pdf/Table%20A.1%20SV%20L-ML-H%201-Julγ-2021.pdf
Truck Operating and Emissions cost	\$/mile	\$ 0.95	https://www.dot.state.mn.us/planning/program/pdf/Table%20A.1%20SV%20L-ML-H%201-July-2021.pdf
Vehicle Operating Cost Year	Date	1/1/2021	See previous
Fatal Crash Cost	\$/fatal crash	\$ 13,300,000	https://www.dot.state.mn.us/planning/program/pdf/Table%20A.1%20SV%20L-ML-H%201-July-2021.pdf
			For crosswalk between MNDOT crash costs which are on KABCO scale and NHTSA crash rate data which is are on a Fatality-Injury-PDO
			scale. To crosswalk between the two scales, we used the fatality cost from MNDOT and used the ratio of injury crash cost to fatality
	injury crash cost/fatality		crash cost from US DOT. Then we multiply that ratio times the MNDOT fatality crash cost to get an injury crash cost that aligns with
Injury Crash Cost to Fatality Crash Cost Ratio	crash cost	0.02	MNDOT data. https://www.transportation.gov/sites/dot.gov/files/2021-02/Benefit%20Cost%20Analysis%20Guidance%202021.pdf
Fatal Crash Vehicles Per Crash	vehicles/crash	1.09	https://www.transportation.gov/sites/dot.gov/files/2021-02/Benefit%20Cost%20Analysis%20Guidance%202021.pdf
Injury Crash Vehicles Per Crash	vehicles/crash	1.44	https://www.transportation.gov/sites/dot.gov/files/2021-02/Benefit%20Cost%20Analysis%20Guidance%202021.pdf
Crash Cost Year	Date	1/1/2021	https://www.dot.state.mn.us/planning/program/pdf/Table%20A.1%20SV%20L-ML-H%201-July-2021.pdf
	fatalities/ 100 million		
Fatality Rate	vehicle miles	1.11	https://cdan.nhtsa.gov/tsftables/National%20Statistics.pdf
	injuries/ 100 million		
Injury Rate	vehicle miles	84	https://cdan.nhtsa.gov/tsftables/National%20Statistics.pdf
Average Vehicle Occupancy	People/Vehicle	1.67	https://www.transportation.gov/sites/dot.gov/files/2021-02/Benefit%20Cost%20Analysis%20Guidance%202021.pdf
Calculated Parameters	Units	Value	Notes
Adjusted Per-Minute Auto Cost	\$/Minute	\$ 0.63	Input to detour results: Multiply by incremental detour minutes and AADT to get \$/day
Ajusted Per-Minute Truck Cost	\$/Minute	\$ 0.56	Input to detour results: Multiply by incremental detour minutes and AADT to get \$/day
Adjusted Per-Mile Auto Cost	\$/Mile	\$ 0.66	Input to detour results: Multiply by incremental detour miles and AADT to get \$/day
Adjusted Per-Mile Truck Cost	\$/Mile	\$ 1.27	Input to detour results: Multiply by incremental detour miles and AADT to get \$/day

Calculation of User Costs Cont.

Use

MNDOT_DetourCost_Inputs_202 11220.xlsx spreadsheet to estimate \$/minute and \$/mile costs for auto and truck users (see screenshot on previous slide)

- Use mndot_detours_wformulas.xls spreadsheet to apply these to AADTs and incremental time and distance for each asset
- Final product is table of \$/day user costs by asset (charted on right)

Running the Risk Models (Phase 2)

Tim Grose

Running the Risk Models

- Risk model implemented with Python scripts (screenshot shown on right) that leverage free, open-source packages
- Inputs are a series of .csv tables read into the scripts (copies included in submittal). These include exposure, cost data, and several lookup tables
- To use the risk model for an asset class, run the Climate_Risk_Analysis.py script.
 - Make sure .csv input files are updated if running the model on new set of assets
 - Need to adjust some variable assignments in the script, such as asset class name and folder path

🕅 Spyder (Python 3.9)

File E	File Edit Search Source Run <mark>Debug</mark> Consoles Projects Tools View Help																
		8	٦		F	□,,,	I								يو	ę	C:\Users\
C:\Us	ers\gros	eth\OneDrive	e - WSP O	365\mnd	ot\risk_ma	odel\Clima	ate_Risk_/	Analysis.p	y								
	_																
	Climat	e_Risk_Anal	ysis.py X	Roady	way_Dama	age_Analy	/sis.py X	Culver	rt_Damag	e_Analysi	is.py X	Bridge_	Damage_	Analysis.	py X		
	1	# -*- cc	oding:														
		Created	on Thu	Nov 1	11 08:3	3:39 2	021										
		created	on ma	1107 1		J.JJ 2	021										
		@author:	grose	th													
		#Climate	Dick	Analys	ic. Ec	timata	lifor		osts d	lua ta	Eutupo	Flood	Evon	F.c.			
		#CIIMACE # ## Ove	erall S	etup	515. 55	CTIIId CC	LIIEC	ycie c	usts u	ue co	Fucure	: F1000	Even				
1		#import	packag														
1		import r	numpy a	s np													
1		from sci	inv imn	as pu ort in	ternol	ate											
1		import t	time	01 0 20	icei por												
1		import o	05														
1		import F	Roadway	_Damag	ge_Anal	ysis											
1		import (Culvert	_Damag	ge_Anal	ysis											
1		from num	nov imp	ort ge	e_Analy	xt xt											
2			p	0.0.80													
2	21																
2	22	#set key	/ param	leters	that o	ften c	hange	from r	un to	run.,	file p	oath, f	ile na	ames			
4	13 0 A	#															
2	25	# #kev par	rameter	s that	t often	chang	e from	run t	o run								
2		#define	asset	class	for th	is run											
2	27	aclass='	'road'														
4		#domoin	00 100		ada u	and fo	n addi		ustom		, anta	nocult	e ho	1	for ito		
		#domain geoname=	or ver ='v4'	STOU C	ode. u	ѕеа то	r addi	ngac	uscom	SUTTIX	Conto	resurt		IDTUI	FOR ILE	ratin	g.
-	31	Beomanie															
3	32	#save οι	utput t	o .xls	s? 1 me	ans ye											
3	3	saveoutp	out=1														
-	34 15	#															
-	36	#file pa	ath														
	37	mydir="(C:\\Use	rs\\gr	roseth\	\OneDr	ive -	WSP 03	65\\mn	dot\\r	risk_mo	del\\"					
3																	
=		# #commans	le that	inclu	ide kov	file	namec										

Running the Risk Models Cont.

- Road risk model needs to be run before bridges or culverts (outputs required for bridge or culvert risk)
- Despite MNDOT using two separate asset classes for culverts (pipe culverts and bridge-like culverts), the risk model itself does not distinguish between these two types of culverts. Thus, some manual renaming of input files is needed.
- Risk model tallies cost by damage mechanism by year and simulation for each climate scenario and asset. These are then discounted (0.07%) and summed across years
- Outputs of risk model saved to .csv showing expected cost (with confidence intervals), agency cost, user cost, etc. by climate scenario and asset. Join to GIS data.
- Script can also output this as formatted .xlsx (charted version of outputs shown on right)

Next Steps

Chris Dorney

Next Steps Cont.

- Phase 2 pilot (2022)
 - Goals
 - Pilot test the method to develop a per asset level of effort estimate
 - Make any necessary enhancement to improve the accuracy of the results
 - Focus on District 6
 - Proceed county-by-county
 - 1. Dodge
 - 2. Steele
 - 3. Houston
 - 4. Others?
- Statewide implementation (2023 and beyond)

Questions?